Ricci curvature, circulants, and a matching condition
نویسنده
چکیده
The Ricci curvature of graphs, as recently introduced by Lin, Lu, and Yau following a general concept due to Ollivier, provides a new and promising isomorphism invariant. This paper presents a simplified exposition of the concept, including the so-called logistic diagram as a computational or visualization aid. Two new infinite classes of graphs with positive Ricci curvature are identified. A local graph-theoretical condition, known as the matching condition, provides a general formula for Ricci curvatures. The paper initiates a longer-term program of classifying the Ricci curvatures of circulant graphs. Aspects of this program may prove useful in tackling the problem of showing when twisted tori are not isomorphic to circulants.
منابع مشابه
RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملOn Randers metrics of reversible projective Ricci curvature
projective Ricci curvature. Then we characterize isotropic projective Ricci curvature of Randers metrics. we also show that Randers metrics are PRic-reversible if and only if they are PRic-quadratic../files/site1/files/0Abstract2.pdf
متن کاملExact and asymptotic results on coarse Ricci curvature of graphs
Ricci curvature was proposed by Ollivier in a general framework of metric measure spaces, and it has been studied extensively in the context of graphs in recent years. In this paper we obtain the exact formulas for Ollivier’s Ricci-curvature for bipartite graphs and for the graphs with girth at least 5. These are the first formulas for Ricci-curvature that hold for a wide class of graphs, and e...
متن کاملNoncoercive Ricci flow invariant curvature cones
This note is a study of nonnegativity conditions on curvature which are preserved by the Ricci flow. We focus on specific kinds of curvature conditions which we call noncoercive, these are the conditions for which nonnegative curvature and vanishing scalar curvature doesn’t imply flatness. We show that, in dimensions greater than 4, if a Ricci flow invariant condition is weaker than “Einstein w...
متن کاملCurvature and transport inequalities for Markov chains in discrete spaces
We study various transport-information inequalities under three di erent notions of Ricci curvature in the discrete setting: the curvature-dimension condition of Bakry and Émery [4], the exponential curvature-dimension condition of Bauer et al. [6] and the coarse Ricci curvature of Ollivier [38]. We prove that under a curvature-dimension condition or coarse Ricci curvature condition, an L1 tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 329 شماره
صفحات -
تاریخ انتشار 2014